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Projection Methods for Dirichlet's Problem in 
Approximating Polygonal Domains with 

Boundary-Value Corrections 

By James H. Bramble*, Todd Dupont"* and Vidar Thomee* 

Abstract. Consider Dirichlet's problem in a plane domain Q with smooth boundary aQ. 
For the purpose of its approximate solution, an approximating domain Qh, 0 < h _ 1, with 
polygonal boundary aQh iS introduced where the segments of aQh have length at most h. 
A projection method introduced by Nitsche [6] is then applied on Qh to give an approximate 
solution in a finite-dimensional subspace of functions Sh, for instance a space of splines 
defined on a triangulation of Q2h. The boundary terms in the bilinear form associated with 
Nitsche's method are modified to correct for the perturbation of the boundary. 

1. Introduction. In this paper, we consider the approximate solution of 
Dirichlet's problem 

(1.1) -Au =f in Q, u = g on 3Q, 

where Q is a bounded plane domain with smooth boundary a Q, and where f and g 
are given functions in Q and on aQ, respectively. 

One approach to this problem is to introduce a new domain Qh whose boundary 
a Qh consists of straight line segments (of maximum length h) and which is close to Q. 

On such an approximate domain, which can be easily subdivid.ed into triangles, some 
version of the finite element method or Galerkin's method can be applied to define 
an approximate solution of (1.1). This approach was considered by Nitsche [5] 
and by Strang and Berger [7] and it was shown that (for a standard Galerkin method) 
in general the error introduced can be bounded by Ch2 where C depends on the 
solution u of (1.1). Thomee [8] has shown that the power of h in their results cannot 
be improved upon but also that the accuracy can in fact be increased to fourth order 
by solving a sequence of three problems with successively more refined boundary 
approximations. 

In [6], Nitsche presented a method for solving approximately the original problem 
(1.1), in which he used a nonstandard bilinear form on the domain Q. His method 
does not require that the approximating functions satisfy the boundary condition 
of (1.1), but his technique demands that the finite-dimensional space of approximating 
functions satisfy some auxiliary conditions near the boundary. In general, in ord.er 
to satisfy these conditions (often referred to as inverse conditions) when using piece- 
wise polynomial approximating functions, something special must be done near 
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the boundary. However, for domains with polygonal boundaries, these assumptions 
turn out to be natural. Based on this observation, we present here a method which 
combines Nitsche's technique with the improved accuracy polygonal domain approx- 
imation in [8]. We show that for any natural number k a bilinear form can be con- 
structed such that the corresponding Galerkin method is of order O(hk) as h tends to 
zero when applied to appropriate subspaces of approximating functions on the approxi- 
mating polygonal domain Qh. These bilinear forms are constructed by modifying 
the boundary terms in Nitsche's bilinear form to correct for the perturbation of the 
domain. In the particular cases k = 2 and 4, the form, and hence the corresponding 
matrix, can be chosen symmetric. 

In Section 2, we introduce notation, state some well-known results on the problem 
(1.1), and derive some auxiliary estimates needed for the analysis. The main theorems 
and their proofs are presented in Section 3. In Section 4, we finally discuss the choice 
of subspaces appropriate for application of the theory. 

2. Notation and Preliminaries. Let Q be a bounded plane domain with boundary 
aQ which we shall assume for convenience to be of class C@. We shall suppose that 
Q is approximated by a family of domains Qh, 0 < h < 1, which are contained in 
Q and whose boundaries aQh consist of a finite number of line segments. For each 
fixed h, we may write 3Qh = U~1M(h) nQi), where each aQ(; consists of a half open 
segment and the aQ(')s are assumed disjoint. With this convention, the outward 
normal vector n, to a Qh at x is well defined. We shall suppose that h = 

max, {length of a Q (1) }. 
We define, for x E aQh, 

a(x) = min{s I s > 0, x + sn Q, 

and shall always assume that 

ah-- SUp 6(x) < Ch. 

We make a further technical assumption about the family Qh, 0 < h < 1. For 
fixed h and 1 ? j _ M(h), define the sets (with the dependence of h suppressed 
in the notation) 

0(i) ={y y x + six, 0 < S < 6(X), x E a i 

(0 Q)() {y [ y x + 6(x)nx,x E h 

We assume that there is an integer N independent of h such that each Q(i ((Q)(i) 
meets at most N of the Q(1 I) ((IQ)( I)), 1 X j. If the domain Q is smooth and convex 
and we take the set a Qh to have its vertices on a Q, it is obvious that our assumptions 
are satisfied. In that case, bh6 <Ch2 and the sets Q(i (and (aQ)(i)) are disjoint. 

For real-valued functions, we introduce the norms in L2(Q) and L2(aQ) (x = 

(x1, x2), a- = arc length along a Q), 
/ ~ \1/2 1/2 

|lvi =J v dx) , lvi = v2 do) 

and denote for s ? 0 by H8(Q) and H8(aQ) the corresponding Sobolev spaces, defined 
for s an integer as the closure of C@(Q) and C-(aQ) with respect to the norms (Da = 
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(W/aXl) 1(8/8X2) 2, a = (al al2), lal = al + a2) 

r c Iy, lVI r= (E IaV)I/2) , lVI = ( E (a)/v 2)1/2 

respectively, and defined for nonintegral s by interpolation (cf. [4]). In Lemma 9, 
we use the analogous definitions when Q is a domain in Euclidean d-dimensional 
space Rd.We shall also use the corresponding norms, with respect to 7 and OQh, 

|| lv = ( E ,f (Day)2 dx), IVIo,h =(fv2 d) 
I a I '!s h aQh 

In addition to these norms, we shall need the inner products in L2( Qh) and L2( Qh), 

which we shall denote by 

= <4, dx and L? ,, da, 
Qh dQh 

respectively, and the Dirichlet form 

D ((p 4, ? = tsZ (aX, aX + ax2 a) dx. 

We further define, for k a nonnegative integer (a/ln denotes differentiation 
with respect to the exterior normal), 

IIIk l (D ( ) + Eh2i (h ) Oh) 

and let Sk denote the Hilbert space obtained by closure of C'(Qh) with respect to 
this norm. It will follow from Lemma 3 below that the restriction to Qh of any function 
in Hk?l(Q) belongs to Ck. 

Notice that although these notions all refer to Qh, we have suppressed the de- 
pendence on h in the notation. 

We shall also use the notation 

Mk(v) = max sup I Dav(x)I. 
I a I <k xCQ 

We state now two well-known results, the proofs of which can be found in e.g. [4]. 
LEMMA 1. For any s > 0, there is a constant C such that, for f E Hs(Q), g E 

Hs+3/2(aQ), (1.1) has a unique solution u E Hs+2( Q) and 

IIUIIs+2 ?_ C(IIfIIs + Igls+3/2). 

We shall always assume below that f E L2(Q), g E H3'2(aQ), so that u C H2( Q). 
LEMMA 2. For any nonnegative integer m and any e > 0, there is a constant C 

such thatfor v E H?+?l(Q) the restriction of Dav, lal = m, to aQ is well defined and 

Z | DaV| _ E |IIVIIm+l + CEC1 I IVI m. 
I a I = m 

We shall need the following similar lemma where the estimate is uniform in h. 
LEMMA 3. For any nonnegative integer m and any e > 0, there is a constant C 

such that v E H?+nl(Q) implies (a3/n)mv E L2(aQ h) for 0 < h < 1 and 
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I(a/an)( ) , h _ I IV| ImI+ + CE'|1|V Im. 

Proof. By choosing local coordinates (t, -q), we may assume for fixed h and j 
thataQ (' = {(t,0) 0 ?< t < t}andthat > Oin Q(j). Wethenhave a/l3n = a/ 
on aQ('- Setting 5(e) = 5((t, 0)), we have, for sp = (l/an)mv, 

) 
(t) a32 

2(e o) = s at- J~ Q - q) d-q a an 

= 
i2(, 65(t)) 

- 2 
f 

Q -q) 
- (, -q) d-q, 

a377 

and hence, using obvious estimates and integrating with respect to (, 

2 do- < ? 2 do- + E1 f (3)2 d, d-q + E-1 f 2 d, d- 
dD (')(Q (i) 

El 
i 17 Q (X 

for any e1 > 0. The result now follows after summation with respect to j, using the 
assumption about Q(i) and (( Q)(i) and Lemma 2. 

We shall need a similar statement for functions vanishing on aQ. For convex 
domains and the simplest choice of Qh, this result is contained in [5]. 

LEMMA 4. There is a constant C such that, for v E H2( Q) with v = 0 on a Q, 

we have 

lV I 0h -< C6h I |V| 12- 

Proof. We obtain as above 

f3 ()(3a (3v r a~ (2v 

v(, 0) = --J q (e 'q) d-7 = - (, a(t)) + 77 (O, 77) d-q, 

and again after obvious estimates, 

2 2 aV((9 
2 2 3 

2 2 

v2 do < 2 f (7-7 da + - j ( ) d d-. 
dQh(' ) (dh Q) ( a -q 3 

h 
, 0 (77 

The result follows as above by summation over j. 
We shall now introduce the finite-dimensional subspaces in which we shall seek 

the approximate solution of (1.1). We shall say that the family of finite-dimensional 
spaces {Sh}O<h?l is of class 3k if Sh C Sk for 0 < h < 1 and if there is a constant C 
such that 

(2.1) 1IIIPIIIk _ C| H || o, O E Sh. 

This inequality could obviously not be satisfied on the whole of 3k for k > 1 and 
the restriction to Sh is essential. This type of assumption is often referred to as an 
inverse assumption. We shall return to a discussion of this condition in Section 4. 

3. Approximation of Dirichlet's Problem in Qh. For k a nonnegative integer and 
-y > 0, we introduce the bilinear form 

Nked Dfor,? yh 3-( Se k = max(k 1). 

defined for sO E Kk, ,6 E Kl. Set k =max(k, 1). 
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We shall study some properties of Nk, a. First we have the following: 
LEMMA 5. For y > 0 and k > 0 given, there is a constant C such that 

IN7, ,(, 01) -' CHll III'IIk, E S,t k E 1. 

Proof. Clearly, 

(3.1) D4', )-ta) ' - D(S?, o) 
/2 D(4,, 4/)1/2 + h / 2 h- / 

|4O0h 

-< 11kPn1111 1114,111o. 

Since bh < Ch, we have 

(3.2) an yh ? Ch n' I0h + h n ,) 

< Cill(Pill[i 11ll9111 

Combining (3.1) and (3.2) yields the result. 
Considered on Sk X Sk, Nk, y is not positive definite. However, under certain 

assumptions on Qh we can prove the definiteness of Nk, on Sh. 

LEMMA 6. Let k > 0 and suppose that ah = o(h) as h -> 0 and that {Sh} E 3k 

Then there are positive constants y, ho, and c such that, for 0 < h < ho, we have 

Nk, ,(fP, 0) _ | |k) fp E Sh . 

Proof. Using the assumption (2.1) (with k = 1), it is easily seen that, for -y chosen 
sufficiently large, 

Novy(pO, S) ? C I I 110 Sh 

(this was proved by Nitsche in [6]). Using (2.1) again, it follows (with a new c) that 

No, a(f, fp) > C|j~11 | C|| k Sh. 

Now 

Nk,7p,f) = No0, yh) - ! 1(Q3)d 7 ) 

We obtain from the definition of the norm 

(j! and < an-Y ) 6hlln[k 

where C depends on -y but not on sp or h. Hence, we may conclude that 

Nk, y(P () 
? 

(C - Cehh1) 
I 

|kI - 

Since 6,, = o(h) as h -O 0 the result follows. 
We now formulate the problem whose solution we will consider as an approxima- 

tion to the solution u of (1.1): Find U E Sh such that 

(3.3) Nk ,(U, Q) = ( - K - -h , for all E- Sh 

where g(x) = g(x + 5(x)n,). We have 
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LEMMA 7. Let k > 0 and suppose that ah = o(h) as h -O 0 and that ISh} E C-, 
Further let y and ho be chosen as in Lemma 6. Then, for 0 < h < ho, the problem 
(3.3) admits a unique solution U. 

Proof. Uniqueness follows immediately from the positivity of Nk, , on Sh (Lemma 
6). Since (3.3) is a finite-dimensional linear system, existence follows from uniqueness. 

We now prove our first estimate for the error U - u. 
THEOREM 1. Let k be a nonnegative integer and suppose that ah = o(h) as h -O 0, 

Sh} E 3, and that y and ho are chosen as in Lemma 6. Then, there is a constant C 
such that, if u E Ck?l(n), we have, for 0 < h < ho 

M u - U|I|k < C? inf |u - xIl|k + ah Mk+l(U)I- 
XESh 

Proof. We consider the case k > 1; the case k = 0 is treated analogously. Let 

x be an arbitrary element of Sh. Then, by the triangle inequality, 

(3.4) I||u - UIIIk ?< I u - xIlIk + IH x - U|IIk. 

Since x - U E Sh, we obtain, by Lemma 6, 

(3 5) 1 1 Ix U| | 12 < CNk (x - U, x - U) 

= CNk,,(X - u, X U) + CN7k, ,(u - U, X - U), 

and because of (3.3), 

IN,,(u - U, x- U)- 

(3.6) - Kg - ' 1! &(aa?j u, O(xU a U) yh1 (x - U)) 

< C3k+Ml M (u)f _ (x - U) + h1 Ix - Uloh} 
O9n O,h 

< C Ah Mk+l(u)h Illx - U||. 

Using Lemma 5, (3.5) and (3.6), we therefore have 

(3.7) l i x - Ul l lk _ C(l l |u - Xll l k + hh Mk+l(u))- 

Combining (3.4) and (3.7), we get 

|IU - Ulllk _ C(QllU - Xll| k + ah h Mk+l(u)). 

Since x is arbitrary in Sh, the result follows. 
We want next to study the error u - U in the L2-norm. We shall do so by a 

modification of a method of Nitsche [6]. For this purpose, we need to make a further 
assumption regarding the spaces S,h. We thus suppose (cf. Section 4) that there is 
a constant C such that 

(3.8) inf liv - xliii _ Chllvll2, v E H2(Q), 0 < h < 1. 
XCSh 

We now introduce an auxiliary function w defined as the solution of the Dirichlet 
problem 

-A w = e inQh, 

= 0 in Q\Qh 
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w = 0 on aQ, 

where e = u - U. We collect some of its properties in the next lemma. 
LEMMA 8. There is a constant C such that, for 0 < h < 1, 

(a) IWIO,h < Cah|Ie|IO,h, 

(b) lOw1anIo,h -< CIlellO,h, 

and 

(c) inf llw - xliii < ChIIeIIO,h. 
X C S h 

Proof The first inequality (a) is a direct application of Lemmas 1 and 4 to w. 
Part (b) follows from Lemmas 1 and 3, and (c) is a consequence of assumption (3.8) 
and Lemma 1. 

We now have the following: 
THEOREM 2. Let k be a nonnegative integer and suppose that 5h = o(h) as h -* 0, 

Sh} E c, and that y and ho are chosen as in Lemma 6. Then there is a constant C 
such that, if u E Ck+ (n), we have for 0 < h < ho 

llu - U| O,h < C{(h + 5hh ) ||Iu - U| + ak1 Mk+l(U)} 

Proof Using the definition of w, Green's identity, and the definition of Nk, 

we have 

lIelCIOh = -(Aw, e) = D(w, e) - (Owlan, e) 

= Nk,j(e, w) + ( ) e,- ) 

7~~~~= (n j! (n ')+(an')' 

with the second term on the right omitted when k = 0. Using Schwarz's inequality 
and the fact that 5h _ Ch, we find that 

IIelIl h < Nk (e, w) + C{ahhI/2lel w | h |21IIe| | 

w 

| WlO,h} 

Hence, using Lemma 8(a), (b), we obtain 

(3.9) llelI|Oh < Nk (e, w) + C 1hh21llelll, lIellO,h. 

Now from Lemma 5 and (3.6), we have, for arbitrary x E Sh, 

Nk,(e, w) = Nk,(e, w - X) + Nk,(e, x) 

? C{Il|elIi 11|w - xl + akh1 Mk+l(u)( 
a + h 1XIO,h)} 

Adding and subtracting w and using the triangle inequality on the last term, we 
obtain 

Nk,(e, w) < C{ Il|eIl|k ||w - xl|i1 

(3.10) + 3k+1 (1/2 IIIW _ Xl + a +wh'w Ih) h Mk+ l(u) h - a~~n O,h + h 'I I, 
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Since x is arbitrary, we may take the infimum on the right side of (3.10) and then 
apply Lemma 8(a), (b), (c) to obtain 

(3.11) Nk ,(e, w) < CjIeI|0Ih{hIIIeIIIk + ah Mk+l(U)}- 

Combining (3.9) and (3.11), the result follows. 
Except for the case k = 0, the bilinear form Nk, is nonsymmetric when 5 4 0. 

In the case k = 1, N1, ̂  may be symmetrized in a simple way with many of its prop- 
erties unaltered. We define 

Nl (so, Ot) = D(,p, s) - (i'~ - - (an' - (anp 
a 
an 

(3.12) 'a n, Vn / n ' n/ 

+ yh 
(p + an' + an 

All previous results for N1, now hold for N1, T. The proofs are trivial modifications 
of those for N1, T. The new form has the additional advantageous property that 
N1 , s ) > N1 > NI, s) for -y > 'yo. Hence, if N1 z, is positive definite on Sh for 
0 < h ? ho, then so is N1, 7 for -y _ yo. 

We also note that if Nk, is defined using an approximate 5(x) given by a(X) on 
aiQh and ah = maxaQh lo(x)- 5(x) <_ C5h, then Lemmas 5, 6 and 7 hold. Theorems 
1 and 2 also hold provided 5k+' is replaced by (5k+' + ah). 

4. Application to Particular Subspaces. We shall now introduce some classes 
of subspaces to which our results conveniently apply. 

For given positive integers k and r with r > k + 1, we say that the family { Sh} O<h_ 1 

of finite-dimensional spaces is of class Sk,r, if, for each h, Sh C SCk and if there is a 
constant C such that, for v E Hr(Q), 0 < h < 1, 

inf 1 lv - Xl||k -< Ch|lllVllr. 
XCESh 

Condition (3.8) clearly means {Sh} E 81,2. We shall see below that 8k,. C 81,2. 

We first prove an interpolation estimate similar to one which was proved in [2] 
in a somewhat different setting. In view of possible other applications, we phrase 
this lemma in a more general form than is needed here. 

LEMMA 9. Let Q C Rd be a bounded domain having the restricted cone property. 
Then, for 0 < k < s < r given, there is a constant C such that, for v E H'(Q), 
0 < h ? 1, 

k 

inf 
H) hjilv - wl|j + hrllwllr, < ChSIIvIls. w Cffr (Q) ? =O 

Proof. By the Calderon extension theorem (cf., e.g., [1] for a precise statement 
and definition of the restricted cone property), there is a constant C0 and for v E HS(Q) 
an extension ve E HS(Rd) such that 

(4.1) iVe IjIHS(Rd) < CO|VIIIl|. 

Now let we E Hr(Rd) be defined by 

we(t) = 0e(t), h2(Il12 + 1) > 1, 
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where 7ve and wi denote the Fourier transforms of v, and we, respectively. We obtain 
by obvious estimates 

(k k 

inf 
<Z h' liv - w i j+ h|llWl r 

< E h I|Ve - 
We III (Rd) + h r 

Il We I IHr (Rd) w CHr (Q) ? =0 ? =0 

-c{L Zh 2i(I12 + I)i IVe Wel2 dt + L h2r(l1l2 + 1)rIfeI2d}1/2 

< C{t [h2(I2 A- h)]kI C1I2 d2 A J [h2(IdI2 A 1)]rIv I2 d} 
d2 1=1+1> h2 42+)_ 

(r) 1/2 
< CiJ [h2(II A- 1)]SIteI ? ChI IVeIHh(Rd)e 

and the result therefore follows by (4.1). 
We can now prove the following inclusion lemma. 
LEMMA 10. Letr2 > ki + 1,j = 1,2, r1 < r2,k1 < k2. Then 

Sk2,r2 C Ski,r2 C Sk, ,rj* 

Proof. Assume that { S k2r2 We have immediately, for v E Hr(Q), 

inf i |v - XIIIkl -< inf l I v - XII I k2 < Ch | IIVIIr I 
X C Sh X C Sh 

so that {Sh S k } , r2 Further, we obtain, using Lemma 3 and the definition of 
Ski,r 2 for w H (Q) 

inf 111v - X||Ikl _ inf {111v - W|j k. + 111W - XIIIkj} 
X C-Sh X C S h 

< C E hi'lllv - wlli + hr2 1I IWIIr2 } 

or since w is arbitrary, using Lemma 9, 
k,+1 

inf 111V - XlIlkl < ChV1 inf Z h7llv - wlI, + hr2IIllWIr2 
X G S h wCH H2 (Q) j=O 

< Ch r,_IIIVI Irl. 

This shows that { Sh} Sk. r 1 and hence concludes the proof of the lemma. 
Since the domain considered is assumed to have a smooth boundary, it is always 

possible to construct Qh such that 5h < Ch2. Our theorems then yield the following: 
THEOREM 3. Let I be a positive integer and assume 5h < Ch2. Further, let 

f E H2 (Q), g E H21+3/2(a Q) and assume { Sh} 8 1, 21+2 n 3 1. Then the error e = 
u - U satisfies 

IIe|lO,h + h|l|ell|| < Ch21+2(l if I 21 + 1g121 +3/2) 

Prooj This is an immediate consequence of Theorems 1 and 2 with k = 1, 
Lemma 1, and Sobolev's inequality which implies Ml+1(u) < CIIUI121+2. 

We shall now describe some classes of subspaces based on triangulation of Qh. 

Suppose that for each h the domain Qh is subdivided into triangles Tq, q = 1, , Nh, 

whose sides have length bounded above by h and below by Kh for some positive K. 

Assume further that the angles in the triangulation are bounded below uniformly 
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in h. Under these assumptions, any triangle in the triangulation can be mapped onto 
one fixed triangle To by an affine transformation. The scale of the transformation 
will be bounded above and below by a fixed multiple of h-', and the Jacobian of 
the transformation will be similarly bounded above and below by a multiple of h-2. 
As a consequence, it follows from the trace inequality (using standard notation) 

| |U|IL2(W.) -< Cl |V| II"(T.) 
that there is another constant C independent of v, q, and h such that 

(4.2) | |V| IL2(aT,) < C(h | IV|I |HI (Tg) + h- / 
| Iv I IL 2(T,) ) 

Applying this to the boundary terms in , we easily find 
m+ 1 

(43) | | IV II |m < C E h'-I Vl Ij,h- 
0=O 

Consider now the family of spaces Vh consisting of splines (by which we shall 
mean functions which reduce to polynomials on the triangles) of degree 4m + 1 
which were constructed in [3, p. 815]. We shall see that { V-h} E Sm,4m-2. To see this, 
let, for v E H4m+2(Q), pm(V) E Vm denote its interpolation polynomial described 
in [3, p. 810]. Then by our assumptions, Theorem 2 in [3] implies that there is a 
constant C independent of v, q, and h such that 

| - Pm(V)IlH1(Tg) < Ch4m+2i I IV IIII4+2(Tq) j = 0, n * , iJ + 1, 

and hence after squaring, summing over q and taking square roots, since pm(v) E 
H (m4 (Qh), 

lIV - Pm(V) | i,h < Ch 4m+2iIV 14m+2, E = 0, . * * m + 1. 

Since, by (4.3), 
m+1 

inf |liv - X|lim _ C , h'|l|v pm(jv)lli,h, 
XEVhm j=O 

it follows that { V-h} EE 81n4m+2. 
In the case m = 1, Vh consists of quintic splines which are in H2(Qh). In the interior 

of the domain, the functions in Sk only need to be once differentiable in L2(Qh) and 
the functions in Vh then have excessive regularity. We shall now give an example 
of a family of spaces in 81,4 consisting of cubic splines which are only once differen- 
tiable in L2(Qh). For this purpose, consider the spaces Qh of cubic splines having for 
parameters the values of the function and its gradient at the vertices of the Tq and 
the value of the function at the center of gravity of Tq (cf. [9] and [3, p. 818]). The 
functions in Qh are continuous but not generally continuously differentiable across 
the edges of the triangles. However, by definition, their derivatives are continuous 
on aQh, which implies that they belong to 3Q. It follows again by (4.3) and triangle- 
wise use of the estimate in [3, p. 818] that if p(v) E Qh is the interpolation polynomial, 
determined by v, then 

2 

inf I lI v - xl II 11 < C E h'-'Iv - P(V)I l? h < Ch I Vl 14, 
XEQh 1=O 

so that { Qh } E 81, 4- 
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Let us turn to the inverse assumptions. We shall prove first that { V,} E M. 
Obviously, the inequality (2.1) follows if we can prove that, for x E V?, 1 _ j < 

hi/ | 1d X/(nl I |L 2(a T) - Cl |grad xI IL2 (T,,) 

As in the proof of (4.2) above, this follows from the fact that, for polynomials of 
degree 4m + 1, 

I I X 2 (a LT.) -I ! C| Igrad x IIL2(T.), 

which is obvious, once we note that the expression on the right is a norm in the 
finite-dimensional space of polynomials of a given degree, modulo constants. Similarly, 
we can see that { Qh } E 3, 

We conclude by remarking that in practical applications of these results, it is 
likely that the symmetric form N1, y, used in conjunction with a space belonging 
to a family in 814 (e.g. the family {Q, } of cubic splines described above), would 
be most advantageous. The estimate of Theorem 3 is valid in this case with I 1 
and hence the resulting scheme has fourth order accuracy. 
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